Commutative law - Knowing that I can swap the numbers around and it will not change the answer.

$$
\begin{aligned}
& \text { For example: } \\
& 5 \times 7 \\
& \text { Is the same as }
\end{aligned}
$$

$$
7 \times 5
$$

I can use my 5 times table to help me.

Nearby known facts - Using what you know and then going up or down the required multiple.

For example

$$
6 \times 8
$$

I know $5 \times 8=40$ so 1 can add on 8 more to get 6×8

Scale answers up by doubling - doubling the answer from a well-known times table to answer another.

$$
\begin{gathered}
\text { For example: } \\
\text { I know } 6 \times 2=12 \\
\text { So } 1 \text { also know } 6 \times 4=24
\end{gathered}
$$

Scale answers down by halving - Halving the answers from a well-known times table to answer another.

$$
\begin{aligned}
& \text { For example: } \\
& \text { | know } 4 \times 10=40
\end{aligned}
$$

So I also know

$$
4 \times 5=20
$$

Partitioning-Breaking the number into manageable chunks, this is useful for multiplication involving numbers above IO .

$$
\begin{aligned}
& \text { For example: } \\
& \begin{array}{c}
\text { I know } 3 \times 10=30 \\
3 \times 2=6 \\
3 \times 12=36
\end{array}
\end{aligned}
$$

Odd or even numbers - This helps us to spot an unexpected answer and allow us to check it.

$$
\text { Even } x \text { even =even }
$$

$$
\text { Even } \times \text { odd }=\text { even }
$$

$$
\text { Odd } \times \text { odd }=\text { odd }
$$

For example:

$$
4 \times 6=24
$$

If you got 23, this is unexpected as 23 is odd and both 4 and 6 are even.

